Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations

نویسندگان

  • Yingda Cheng
  • Irene M. Gamba
  • Fengyan Li
  • Philip J. Morrison
چکیده

Discontinuous Galerkin methods are developed for solving the Vlasov–Maxwell system, methods that are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov–Maxwell system. The proposed scheme employs discontinuous Galerkin discretizations for both the Vlasov and the Maxwell equations, resulting in a consistent description of the distribution function and electromagnetic fields. It is proven, up to some boundary effects, that charge is conserved and the total energy can be preserved with suitable choices of the numerical flux for the Maxwell equations and the underlying approximation spaces. Error estimates are established for several flux choices. The scheme is tested on the streaming Weibel instability: the order of accuracy and conservation properties of the proposed method are verified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for Vlasov-maxwell Equations

In this paper, we propose to use discontinuous Galerkin methods to solve the Vlasov-Maxwell system. Those methods are chosen because they can be designed systematically as accurate as one wants, meanwhile with provable conservation of mass and possibly also of the total energy. Such property in general is hard to achieve within other numerical method frameworks to simulate the Vlasov-Maxwell sy...

متن کامل

Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system

In this paper, we generalize the idea in our previous work for the Vlasov-Ampère (VA) system [8] and develop energy-conserving discontinuous Galerkin (DG) methods for the Vlasov-Maxwell (VM) system. The VM system is a fundamental model in the simulation of collisionless magnetized plasmas. Compared to [8], additional care needs to be taken for both the temporal and spatial discretizations to ac...

متن کامل

Error Estimates of Runge-Kutta Discontinuous Galerkin Methods for the Vlasov-Maxwell System

In this paper, error analysis is established for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve the Vlasov-Maxwell system. This nonlinear hyperbolic system describes the time evolution of collisionless plasma particles of a single species under the self-consistent electromagnetic field, and it models many phenomena in both laboratory and astrophysical plasmas. The methods involve a ...

متن کامل

A discontinuous Galerkin method for the Vlasov-Poisson system

A discontinuous Galerkin method for approximating the Vlasov-Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function. The performance of the method is investigated by computing f...

متن کامل

Numerical study of the two-species Vlasov-Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability

In this paper, we propose energy-conserving Eulerian solvers for the two-species Vlasov-Ampère (VA) system and apply the methods to simulate current-driven ionacoustic instability. The algorithm is generalized from our previous work for the singlespecies VA system [9] and Vlasov-Maxwell (VM) system [8]. The main feature of the schemes is their ability to preserve the total particle number and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014